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Abstract:

This paper briefly describes an on-line hardware
system based on a 16x8x4 cascading neural
network architecture. The chip was fabricated
through MOSIS on a 0.35um CMOS-bulk
process and successfully tested for functionality.
This chip is used to evaluate a neural network
solution in VLSI hardware using chaotic time
series containing very high order correlation
data that never repeats itself. Chaotic time
series is an excellent tool for evaluating the
robustness of prediction techniques. We also
describe the technique used to perform on-line
learning using an algorithm that easily maps to
hardware called Cascade Error Projection
(CEP). This technique consists of two steps: 1)
down loading into the chip a set of 8-bit
quantized weights, and 2) on-line adjustment (re-
learning) of the new weight set to compensate for
mismatching induced by quantization and
transistor mismatch on the chip.

The results will be compared with the software-
based technique (8-bit or 64-bit quantization
weight) using CEP.

This work, based on noise-prediction and
subtraction techniques, will be developed for on-
chip learning and applied to systems where
adaptive noise cancellation is required to meet
system requirements. It is currently being
applied to reducing noise and enhancing the
performance of a MEMS-based micro gyro
system that is currently under development.
Application of this work to large mixed-signal
chip designs is planned for Systems-On-A-Chip
(SOAC) applications for the Center for
Integrated Microsystems (CISM) program at Jet
Propulsion Laboratory.

I. Introduction:

On-chip noise is a major factor that
needs to be dealt with when designing
highly integrated mixed-signal systems

on a chip. Self-induced on-chip noise,
which degrades system performance, is
very difficult to deal with. This is
especially  true  for  space-based
applications  such  navigation-grade
MEMS-based micro gyro systems
requiring bias drift stabilities as low as
0.01%hr. To meet this demand, on-chip
noise reduction is a necessity. One way
to reduce noise is through prediction and
subtraction (noise cancellation).
However, noise prediction is a
challenging task and sometimes cannot
be done, e.g. random noise cannot be
predicted. Noise that has very weak
correlation with its past is studied in this
paper. We use a chaotic time series
prediction algorithm that is applicable to
a noise source that never repeat itself
and contains a very weak correlation
with the past (the first and seventeenth
delay units) [1].

Neural networks have been
successfully used for prediction [1-5]
and are a good candidate for this
application. However, most of the work
in this area has utilized software based
simulation networks that may not be
suitable for SOAC hardware
implementation.  Additionally, some
reports have investigated neural network
learning under limited bit weight
quantization [6-8] and focused on
prediction problems [2].

In this paper, our study will focus
on a technique to map the software
solution into a hardware system and to



relearn new weight sets to compensate
for element mismatching in the
hardware. Accordingly, we will present
the system description in section II,
hardware results from a downloaded
software weight set in section III, a
technique for on-line learning in section
V1, and conclusions in section V.

II. System Description:

In previous studies [2,8], CEP has
demonstrated tolerance to less bit
quantization for learning, than for other
learning techniques that require more
bits [6-7]. In this study, we designed,
fabricated, and tested a 16x8x4 CEP
neural chip. The chip was fabricated
through TSMC’s 0.35um CMOS-bulk
technology via MOSIS. The system
architecture is shown below in Figure 1.

Hidden units

Synapse

All components such as 8-bit DAC
inputs and synaptic weights can be
programmed through a row and column
address. In addition, neuron sigmoidal
slope can also be varied programmable
input Igain (Igain is low, the neuron
slope is stiff and vice versa).

Input array:

The input array has 16 (ij-i16) 8-bit
DACs as shown in Figure 1. The detail
design of this DAC can be found in [9].
The output of each DAC consists of two
currents of value Iin and 16*Iin. The
output pairs from the 8-bit DACs are
input to synapse to perform a two
quadrant multiplication (input is positive
8-bit while synapse is +/- 7-bit weight).
The outputs of the multipliers are
summed vertically through a wire and
connected to the input of a neuron to get
a sigmoidal mapping.
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Figure 1. Cascade error projection neural architecture implemented in TSMC’s 0.35um CMOS-bulk technology.




Hidden units:

There are 8 hidden units in this
system (Figure 1). The weight set in a
hidden unit is incrementally one synapse
from the previous one (hidden unit 2
contains 17 synapses while hidden unit 1
is only contains 16 synapses) and their
inputs are also obtained from the output
of the previous hidden unit.

The operation of hidden units is: 1)
inner product of input plus hidden units
(if there are previous hidden units to
input of current hidden units) and weight
vectors; 2) the output results of inner
product vectors are summed and mapped
to sigmoidal function. The slope of
sigmoidal function can be adjusted by
varying the current Igain.

Output units:

There are four output units (Figure
1) and each output is mapped through a
sigmoidal function by inner product of
inputs and 8 hidden units with 24
synaptic weights. The slope of the
sigmoidal function can be varied the
same as that of the hidden units.

III. Weight Down Loading:

In this study, we only used four input
units as X;, Xj+1, Xi+2, and X;+3 and one
output is Xijs4.

The chaotic time series prediction
problem has been studied through
simulation of the CEP algorithm with
floating point (32-bit), 4- to 8-bit weight
quantization and the results are reported
in [2].

The weight set that is obtained by
software simulation using a floating-
point machine is down loaded to our
hardware system as shown above. The

results obtained by hardware are shown
below:

The error curve of the original data and
hardware results (from down loading
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Figure 2. output results from hardware
from downloading weight set. The top
plots consist of original and hardware
results; and the bottom plot is the error
between the top plots.

weight) is not sufficient (Figure 2).

The discrepancy of results between
hardware and original data (Figure 2)
may come from mismatching transistor,
sigmoidal curve, noise from system
etc... To compensate for the
mismatching, we utilize a re-learning
phase, which will add a new hidden unit
to perform on-line learning based on the
current error surface.

IV. On-Line Learning:

When the results from the weight
downloading approach are not satisfied
for the application, relearning in
hardware (on-line learning) is the next
step utilized for compensating the
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mismatching in hardware. The Cascade
Error  Projection (CEP) learning
technique is used. The advantages of
CEP is simple to learn and friendlier to
hardware limitation such as limited bit
weight quantization. For the CEP on
line learning, there consists of two steps:

a) Perceptron learning:

In this session, the error surface (the
differences between target and actual
output data) is projected to a newly
added hidden unit as a new target in
which the new energy function is
formed:

P m
Em+1)=Y (/7 (n+1) —%Z(r;’ %

p=1

With n - number of previous hidden
unit, p- index of pattern number, P-
total pattern, o-index of output
number, m-total output required.

The new weight can be updated by:

Awi(n+1)= —nw

r(n+1)
In this hardware learning process, the
derivative of the sigmoidal transfer
function of hidden wunit n+1 is
required. To obtain a derivative in
hardware, we use a bias as input
while the weight is changed with +/-
5. The respected output of hidden
unit n+1 while changing weights are
used to calculate the derivative as
below:

S o)=a*(f(x+3)-f(x-5))

b) Calculating weight:

After 500 learning iterations is
complete, the weight set between
new hidden unit n+1 and output units
can be calculated as follow:
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denotes the output transfer function
derivative with respect to its input.
fF(m+1) - the transfer function of
hidden unit n+1. This procedure is
repeated with three newly added hidden

units consecutively, the output results
were obtained in Figure 3.
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Figure 3. output results from hardware
after on-line training. The top plots
consist of original and hardware results
after re-learning; and the bottom plot is
the error between the top plots.

The results show some improvements
when on-line learning is applied. It is
believed that when more hidden units are
added, the performance is better.
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VY. Conclusion:

In this paper, we demonstrated that
online learning in hardware using CEP is
a sufficient technique to compensate for
hardware mismatching due to processing
variation and limited bit quantization to
solve time series prediction problems.
From this benchmark problem, it can be
suitably applied to solve noise prediction
when correlated noise exists. This study
is still a pre-final step to the noise
reduction problem.

For the future study, on-chip learning
will be the final goal in solving practical
problems involving noise that can vary
in time.
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